Liknande böcker
Differential Geometrical Methods in Mathematical Physics : Proceedings of the Conference Held at Aix-en-Provence, September 3-7, 1979 and Salamanca, September 10-14, 1979
Bok av P L Garcia
Configuration spaces of identical particles.- The geometrical meaning and globalization of the Hamilton-Jacobi method.- The Euler-Lagrange resolution.- On the prequantum description of spinning particles in an external gauge field.- Classical action, the wu-yang phase factor and prequantization.- Groupes differentiels.- Representations that remain irreducible on parabolic subgroups.- Non-positive polarizations and half-forms.- Connections on symplectic manifolds and geometric quantization.- Geometric aspects of the feynman integral.- Relativistic quantum theory in complex spacetime.- Existence et equivalence de deformations associatives associees a une variete symplectique.- A new symplectic structure of field theory.- Conformal structures and connections.- Equilibrium configurations of fluids in general relativity.- Quaternionic and supersymmetric ? models.- Supergravity as the gauge theory of supersymmetry.- Hypergravities.- Preface.- Preface.- Morse theory and the yang-mills equations.- Reduction of the yang mills equations.- Tangent structure of Yang-Mills equations and hodge theory.- Classification of gauge fields and group representations.- Gauge asthenodynamics (SU(2/1)) (classical discussion).- Spinors on fibre bundles and their use in invariant models.- Glueing broken symmetries together.- Deformations and quantization.- Stability theory and quantization.- Presymplectic manifolds and the quantization of relativistic particle systems.- Geometric quantisation for singular lagrangians.- Electron scattering on magnetic monopoles.- The metaplectic representation, weyl operators and spectral theory.- Supergravity: A unique self-interacting theory.- General relativity as a gauge theory.- On a purely affine formulation of general relativity.- A fibre bundle description of coupled gravitational and gauge fields.- Homogenous symplectic formulation of field dynamics and the poincar artan form.- Spectral sequences and the inverse problem of the calculus of variations.- Geodesic fields in the calculus of variations of multiple integrals depending on derivatives of higher order.- Separability structures on riemannian manifolds.