Liknande böcker
Poset of $k$-Shapes and Branching Rules for $k$-Schur Functions
Bok av Thomas F Lam
The authors give a combinatorial expansion of a Schubert homology class in the affine Grassmannian GrSLk into Schubert homology classes in GrSLk 1. This is achieved by studying the combinatorics of a new class of partitions called k-shapes, which interpolates between k-cores and k 1-cores. The authors define a symmetric function for each k-shape, and show that they expand positively in terms of dual k-Schur functions. They obtain an explicit combinatorial description of the expansion of an ungraded k-Schur function into k 1-Schur functions. As a corollary, they give a formula for the Schur expansion of an ungraded k-Schur function.