Casual Models : How People Think About the World and Its Alternatives
Bok av Steven Sloman
Human beings are active agents who can think. To understand how thought serves action requires understanding how people conceive of the relation between cause and effect, between action and outcome. In cognitive terms, how do people construct and reason with the causal models we use to represent our world? A revolution is occurring in how statisticians, philosophers, and computer scientists answer this question. Those fields have ushered in new insights about causal
models by thinking about how to represent causal structure mathematically, in a framework that uses graphs and probability theory to develop what are called causal Bayesian networks. The framework starts with the idea that the purpose of causal structure is to understand and predict the effects of
intervention. How does intervening on one thing affect other things? This is not a question merely about probability (or logic), but about action. The framework offers a new understanding of mind: Thought is about the effects of intervention and cognition is thus intimately tied to actions that take place either in the actual physical world or in imagination, in counterfactual worlds. The book offers a conceptual introduction to the key mathematical ideas, presenting them in a non-technical
way, focusing on the intuitions rather than the theorems. It tries to show why the ideas are important to understanding how people explain things and why thinking not only about the world as it is but the world as it could be is so central to human action. The book reviews the role of causality, causal
models, and intervention in the basic human cognitive functions: decision making, reasoning, judgment, categorization, inductive inference, language, and learning. In short, the book offers a discussion about how people think, talk, learn, and explain things in causal terms, in terms of action and manipulation.
"Sloman has written an accessible, popular-level book that will serve as a useful general introduction to the tricky and complex issues involved in understanding causality and its role in cognitive processing. For people who are unfamiliar with the issues and the research involved, this is a good starting point, although parts may require thoughtful rereadings. For people who are generally familiar with the issues but not the recent research or theoretical conceptions (e.g. , the use
of counterfactuals), this book can serve as a useful guide to update one's knowledge. People who are actively working in this area will probably find this book a quick and enjoyable read."Michael Palij, PsycCRITIQUES
"The field of Bayesian causal models is becoming increasingly important for theory building in cognitive science. This book provides a lively and lucid introduction to the core concepts, and weaves them together with the latest research on causality and related topics from the cognitive sciences. Elegant and entertaining."Nick Chater, Director of the Institute for Applied Cognitive Science and Profess...