In-situ Prozessanalyse der CVS-Synthese von nano-kristallinem Siliziumkarbid mit Hilfe eines Aerosolmassenspektrometers

Bok av In-Kyum Lee
Gasphasenprozesse sind eine Schlüsseltechnologie zur kontrollierten Herstellung ultrafeiner Pulver in großem Maßstab. Die Kenntnis über Bildung und Wachstum von Nanopartikeln aus der Gasphase ist eine grundlegende Voraussetzung zur Optimierung und Kontrolle der Prozessführung und letztendlich des Produkts. Abhängig von der weiteren Anwendung ist die Größenverteilung und Struktur der hergestellten Partikel von großer Bedeutung. Kommerziell wird ein Großteil der Pulver durch Flammenprozesse hergestellt. Wand-beheizte Rohrreaktoren werden meist nur im Labormaßstab verwendet, da Ablagerungen an der Reaktorwand, hohe Energiekosten und begrenzte Prozesstemperaturen eine wirtschaftliche Nutzung von Massenprodukten einschränken. Durch die Entkopplung der Energiezufuhr für die chemische Umsetzung aus dem Reaktionsraum im Vergleich zu Flammenprozessen ist aber eine variablere Kontrolle des Temperatur- und Strömungsprofils möglich, das letztendlich einen entscheidenden Einfluss auf die Zeit - Temperatur - Geschichte der Partikel hat. Ein weiterer Vorteil von Heisswandreaktoren im Vergleich zu Flammenprozessen ist die Möglichkeit, auch nichtoxidische Verbindungen und metallische Materialien herstellen zu können. Die Herstellung hochreiner und maßgeschneiderter Materialien und Materialsysteme für funktionelle Anwendungen sind mit dieser Methode sehr vielversprechend. Ziel dieser Arbeit war der Aufbau eines Aerosolmassenspektrometers zur in-situ Massenanalyse von Gasphasenprozessen speziell an einem Heisswandreaktor im Niederdruckbereich, d.h. an den im Fachgebiet Dünne Schichten weiterentwickelten CVS-Prozess. Nanokristallines Siliziumkarbid wurde durch thermische Zersetzung des Vorprodukts Tetramethylsilan hergestellt. Die Funktionsfähigkeit und Leistungsfähigkeit des AMS wurde für das Beispielsystem Siliziumkarbid gezeigt. Das Aerosol wurde am Ende der heissen Zone entnommen. Durch Erzeugung eines Molekularstrahls wird die Probe an der Probennahmestelle stark abgekühlt und verdünnt, so daß das Partikelwachstum und die chemischen Reaktionen praktisch eingefroren sind. Molekulare Spezies im Massenbereich von 1 bis 300 amu konnten mit einem kommerziellen Quadrupolmassenspektrometer gemessen werden. Die thermische Zersetzung des Vorprodukts Tetramethylsilan wurde temperaturabhängig gemessen. Dabei zeigte sich, daß die Zersetzung des TMS durch ein von Winterer entwickelte Modell gut beschrieben werden kann. Jedoch ist die Beschreibung des Partikelwachstums durch SiC-Monomere zu einfach. Polymerisierte Vorprodukte, wie sie von Fritz gefunden wurden, wurden als Wachstumsspezies für die SiC Bildung bestätigt. Partikulare Spezies im Massenbereich von 10.000 amu bis etwa 107 amu (2 - 39 nm für SiC) konnten mit dem Partikelmassenspektrometer nachgewiesen werden. Die Messungen wurden mit ex-situ Methoden wie Transmissionselektronenmikroskopie und Gasadsorption verifiziert. Die Massenbestimmung geschieht durch die Messung der kinetischen Energie, der Bestimmung der Ladungsanzahl und der Messung der Partikelgeschwindigkeit im Molekularstrahl ausschließlich durch elektrische Felder. Signalform, gerätebedingte Einflüsse auf die Signalform und die Auswertung und Interpretation der Messergebnisse werden detailliert beschrieben. Es zeigte sich, daß die Partikel durch den Prozess sowohl negativ als auch positiv geladen waren. Ein Mechanismus, der für die Partikelladung verantwortlich ist, konnte dabei noch nicht identifiziert werden. Der Einfluss von Synthesetemperatur, Trägergas, Precursorkonzentration und Prozessdruck auf die Partikelladung läßt einen einzigen Ionisationsmechanismus unwahrscheinlich erscheinen. Ein starker Einfluss der Precursorkonzentration auf das Gesamtaerosolvolumen wurde durch Messungen mit Hilfe einer Quartzmikrowaage