Liknande böcker
Magnetische NiMnGa-Polymer-Komposite
Bok av Nils Scheerbaum
Im Rahmen dieser Arbeit wurde das Legierungssystem Ni-Mn-Ga in den Formen Einkristall, dünne Schicht, Band und Faser untersucht. Ni-Mn-Ga zählt zu den magnetischen Formgedächtnis (MSM) Legierungen. MSM Legierungen sind besonders durch ihre großen, magnetisch induzierbaren Dehnungen (MFIS) von etwa 10% interessant sind. Der große MFIS kann entweder durch eine magnetisch induzierte Umorientierung der Kristallstruktur (MIR) durch Zwillingsgrenzenbewegung oder durch eine magnetisch induzierte Phasenumwandlung hervorgerufen werden. Der Schwerpunkt dieser Arbeit lag besonders auf den schmelzextrahierten Fasern und deren Verwendung in NiMnGa-Polymer-Kompositen. Verwendete Untersuchungsmethoden waren: Mikrostrukturuntersuchung durch Rasterelektonenmikroskopie (REM), Lokale Orientierungsbestimmung durch Elektronen Rückstreubeugung (EBSD), Texturmessungen mit Hilfe von Synchrotronstrahlung und magnetische Messungen durch ein Vibrationsproben- oder SQUID-Magnetometer.
Die EBSD-Untersuchungen am Ni50Mn27Ga23-Einkristall zeigten das Vorhandensein der drei möglichen Zwillingsvarianten, die durch gerade Zwillingsgrenzen voneinander getrennt sind. Durch die leichte Missorientierung von etwa 4° zwischen der leichten Magnetisierungsachse c und der Kristalloberfläche, kommt es zur Streufeldminimierung durch Ausbildung von Lanzettendomänen. Anhand von dünnen, gesputterten NiMnGa-Schichten wurde gezeigt, dass durch Kristallstrukturdefekte und innere Verspannungen geschwungene Zwillingsgrenzen entstehen können. Sowohl gerade (im Einkristall) als auch geschwungene Zwillingsgrenzen (in der Schicht) können beweglich sein und durch ein Magnetfeld bewegt werden (MIR). Dass die Temperatur der martensitischen Phasenumwandlung Tm nicht nur von der Zusammensetzung, sondern auch von der Korngröße abhängt, wurde an rascherstarrten Ni50,9Mn27,5Ga21,6-Bändern gezeigt. Durch verschiedene Glühbehandlungen wurden unterschiedliche Korngrößen in den Bändern eingestellt, wobei sich mit steigender Korngröße Tm erhöht.
Die durch Tiegelschmelzextraktion hergestellten Ni50,9Mn27,1Ga22,0-Fasern sind etwa 60µm dick, (5-10)mm lang und haben eine Korngröße von etwa 5µm. Durch Glühen der Fasern bei 1100°C werden die Korngröße, die martensitische Umwandlungtemperatur (Tm) und die Curietemperatur (TC) erhöht. Die geglühten Fasern sind ferromagnetisch und martensitisch (5M) bei Raumtemperatur, zeigen eine magnetfeldinduzierte Verschiebung von Tm und haben eine Korngröße von etwa 60µm, was dem Faserdurchmesser entspricht. D.h., die Körner sind entlang der Faserachse aufgereiht ("bambusartige" Kornstruktur). MIR zeigen die geglühten Fasern sowohl im eingebetteten als auch im freien Zustand, was anhand von VSM- und EBSD-Messungen gezeigt wurde.
Die geglühten Fasern brechen bevorzugt entlang der Korngrenzen, weshalb durch eine relativ geringe mechanische Beanspruchung der Fasern (Mörsern oder Zerreiben zwischen Papier) ein- oder oligokristalline NiMnGa-Teilchen hergestellt werden können. Durch Einbetten dieser NiMnGa-Teilchen in eine Polymermatrix entstehen NiMnGa-Polymer-Komposite. Die Vorteile solcher Komposite sind die relativ einfache Herstellung (kristallographisch texturiert und in beliebiger Form), die Verminderung von Wirbelströmen durch die nichtleitende Matrix und ein potentiell gutes Ermüdungsverhalten, da das Brechen einzelner MSM-Teilchen nicht zum Versagen des gesamten Kompositen führt. Als Polymermatrix wurde entweder Polyester oder Polyurethan verwendet. Das viel weichere Polyurethan erlaubt MIR in den eingebetteten NiMnGa-Teilchen, wodurch sich die Polyurethan-NiMnGa-Komposite prinzipiell für eine Aktuatoranwendung eignen.
Die magnetisch induzierte Dehnung (MFIS) in den Kompositen wird durch den Volumenanteil an MIR-fähigem MSM-Material bestimmt. Dieser beträgt in den Kompositen für die MFIS-Messungen etwa (5-10)%, da nur ein Teil der eingebetteten NiMnGa-Teilchen MIR-fähig ist. Damit lässt sich der erreichbare MFIS in