Hochratenprozesse für organische Halbleiterbauelemente

Bok av Steffen Mozer
Im Rahmen dieser Arbeit wurde der Einfluss des Abscheideprozesses auf die Eigenschaften eines organischen Halbleiterbauelements untersucht. Dabei lag das Hauptaugenmerk auf der Abscheidung der Deckelektrode. Diese stellt den energieintensivsten Prozessschritt bei der Herstellung einer organischen Leuchtdiode (OLED) dar und kann zu Degradationseffekten im Bauelement führen, wie hier nachgewiesen wird. Untersucht wurden sowohl transparente Kontakte aus kathodenzerstäubtem, Aluminium dotiertem Zinkoxid (AZO), als auch opake Elektroden aus physikalisch-thermisch abgeschiedenen Aluminium. Das Ziel der Untersuchungen bestand darin, Verfahren mit möglichst hohen Beschichtungsraten zu entwickeln, deren Abscheidung keinen nachteiligen Einfluss auf darunter liegende Schichten nimmt. Der Prozess der Kathodenzerstäubung kann zur Belastung der Bauteile durch UV- und thermische Strahlung führen. Darüber hinaus kommt es zur Emission von Partikeln mit hoher kinetischer Energie aus dem Target. Diese Effekte erhöhen die Diffusionsfähigkeit der zerstäubten Partikel auf der Substratoberfläche, können aber auch die chemischen und morphologischen Eigenschaften der organischen Halbleiterschichten nachteilig beeinflussen. Im Gegensatz zu Indiumzinnoxid ist es beim hier verwendeten AZO erforderlich, ein Mindestmaß an Oberflächendiffusion auf dem Substrat zuzulassen um elektrisch leitfähige Schichten herzustellen. Um eine Rückwirkung der Kathodenzerstäubung auf die darunter liegenden organischen Schichten zu unterbinden wurden die Degradationsmechanismen separat untersucht und eine graduelle Prozessführung entwickelt. Dabei wurde mit der Abscheidung einer schlecht leitfähigen, aber schonend abscheidbaren Schicht auf den organischen Halbleitern begonnen. Die Prozessparameter wurden im Verlauf des Schichtwachstums kontinuierlich in Richtung energiereicher Partikel verändert, wodurch leitfähigere Schichtstrukturen entstanden. Die bereits abgeschiedenen Teile der graduellen Schicht fungierten dabei als Barriere zwischen den organischen Molekülen und dem stetig leitfähiger werdenden Bereichen der Deckelektrode. Dies ermöglichte die Herstellung der weltweit ersten OLED mit einem AZO-Deckkontakt, abgeschieden aus einer planaren Magnetronkathode. Im Bereich opaker Bauelemente wird überwiegend Aluminium als Deckelektrode verwendet, welches mittels physikalisch thermischer Gasphasendepositon (PVD) abgeschieden wird. Bei diesem Prozess entsteht sehr viel Wärmestrahlung welche sich nachteilig auf die elektrooptische Effizienz der OLEDs auswirken kann. Um diesen Prozess zu untersuchen wurde zunächst der Einfluss thermischer Energie auf die morphologischen und elektrischen Eigenschaften dünner organischer Schichten quantifiziert. Unter Berücksichtigung dieser Rahmenbedingungen war es anschließend möglich, apparative und verfahrenstechnische Optimierungs- maßnahmen durchzuführen, die eine Einflussnahme der Abscheideparameter auf das Bauteil nahezu vollständig unterbinden. Bei diesen Untersuchungen zeigte sich, dass eine höhere Abscheiderate nicht nur den Durchsatz steigert, sondern auch die thermische Belastung der Bauteile insgesamt reduziert. Diese Ergebnisse führten zur Neuentwicklung eines PVD-Systems mit sehr hoher Abscheiderate. Es basiert auf dem Verfahren der Flashsublimation und reduziert die Beschichtungszeit einer 100 nm dicken Aluminiumschicht von 4 Minuten auf etwa 10 Sekunden. Infolge der Veränderungen im PVD-Prozess konnte die Bildung von Mikrokristallen im abgeschiedenen Aluminium nachgewiesen werden. Die Auswirkungen dieser Kristallisation auf die morphologischen und elektrischen Eigenschaften der Aluminiumschicht wurden ebenso untersucht, wie der Einfluss des Hochratenprozesses auf die elektrooptischen Eigenschaften der OLED. Durch geeignete