Liknande böcker
Entwicklung von siliziumbasierten Transistoren für den Einsatz bei hohen Temperaturen in der Gassensorik
Bok av Peter Iskra
In dieser Arbeit werden unterschiedliche MOSFET-Konzepte hinsichtlich ihrer Temperaturstabilität verglichen. Ferner wird eines der Konzepte in einen Feldeffekt-Gassensor integriert und charakterisiert. Zu den MOSFET-Konzepten zählen zum einen laterale und zum anderen vertikale Transistoren. Die laterale MOSFETVariante wird auf Silizium und SOI-Substraten (Silicon On Insulator) aufgebaut. Durch den Einsatz der SOI-Substrate kann eine deutliche Steigerung der Temperaturstabilität erzielt werden. Die vertikale MOSFET-Variante bietet bedingt durch die Prozessführung eine einfache Möglichkeit zur Realisierung von kurzen Kanallängen und hohen Kanaldotierungen. Vor allem durch die hohe Kanaldotierung ist dieses Konzept prädestiniert für den Aufbau von temperaturstabilen MOSFETs. Weitere Temperaturfestigkeit der vertikalen MOSFETs kann durch eine Modifikation des Kanaldotierprofils gewonnen werden. In dem hergestellten Gassensor wird ein vertikaler Auslesetransistor eingesetzt. Die Funktion des Sensors wird anhand von Gasmessungen nachgewiesen. Zu Beginn der Arbeit wird die Änderung des Bauteilverhaltens infolge zunehmender Temperatur behandelt. Ein besonders kritischer Temperatureffekt ist durch den zunehmenden OFF-Strom gegeben. Die Ursache für die Zunahme liegt in ansteigenden Leckströmen an den in Sperrrichtung betriebenen pn- Übergängen. Die Unterdrückung dieser lässt sich sowohl durch eine Verringerung der pn- Übergangsfläche als auch durch hohe Dotierungen erzielen. Eine hohe Dotierstoffkonzentration stellt auch bei höheren Temperaturen den extrinsischen Zustand des Halbleiters und damit die sperrende Funktion des pn- Übergangs sicher. Der Ansatz zur Steigerung der Temperaturstabilität durch Verringerung der pn-Übergangsfläche wird bei lateralen Transistoren durch den Aufbau auf SOISubstraten umgesetzt. Hierzu werden die MOSFETs auf eine dünne Siliziumschicht platziert. Die dotierten Gebiete grenzen dabei überwiegend an eine Oxidschicht, die vom Substrat isoliert ist. Das Kanalgebiet der SOI-MOSFETs wird elektrisch nicht kontaktiert, was zusätzliche Effekte hervorrufen kann. Der wichtigste ist hierbei der Kink-Effekt. Bei diesem lädt sich das Kanalgebiet auf und führt zu einem nicht mehr sättigendem Drain-Strom im Ausgangskennlinienfeld. Die Erhöhung der Temperaturfestigkeit durch Steigerung der Dotierstoffkonzentration kommt bei vertikalen MOSFETs zum Tragen. Bei der Wahl der Dotierstoffkonzentration existieren jedoch Grenzen. Eine zu hohe Dotierung führt aufgrund eines Band-zu-Band-Tunnelprozesses bereits bei Raumtemperatur zu einem Durchbruch des pn-Übergangs. Folglich muss ein Kompromiss zwischen Temperaturfestigkeit und dem Tunneldurchbruch gefunden werden. Ferner besteht zur Unterdrückung des Tunneldurchbruchs die Möglichkeit der Einbettung einer intrinsischen Schicht zwischen die p- und n-dotierte Zone. Ein vertikaler n-Kanal Transistor wird dann durch einen nipin-Schichtstapel gebildet. Die intrinsische Schicht vergrösert die Tunnelweite und ermöglicht höhere Dotierungen für die p- und n-Gebiete. Der in dieser Arbeit hergestellte Gassensor stellt eine Weiterentwicklung einer bereits kommerziell erhältlichen Variante dar. Diese Standard-Variante kann aufgrund der verwendeten Technologie nur bis zu einer Temperatur von 200C betrieben werden. Für zahlreiche Anwendungen wird jedoch eine höhere Temperaturstabilität angestrebt. Daher wird in dieser Arbeit ein hinsichtlich der Temperaturfestigkeit optimierter Gassensor hergestellt. Wesentliche Unterschiede zur Standard-Variante liegen in einem vertikalen MOSFET-Konzept sowie einem Aufbau auf SOI-Substraten. Die Herstellung der unterschiedlichen Bauelemente erfordert die Entwicklung und Optimierung zahlreicher Prozesstechnologien. So liegen die Schwerpunkte beim vertikalen